[N

Faults in Linux:
10 years later

Nicolas Palix, Gaél Thomas, Suman Saha
Christophe Calves, Julia Lawall, Gilles Muller

DIKU / INRIA Regal / LIP6

ZIINRIA lip

What is a fault?

A fragment of code that may cause a runtime error.

rstatic unsigned int tun_chr_poll(struct file *file, poll_table *wait) {
struct tun_file *tfile = file->private_data;
struct tun_struct *tun = __tun_get(tfile);
struct sock *sk = tun->sk;
unsigned int mask = 0;

if (!tun)
return POLLERR;

Possible effects in the Linux kernel:
e Kernel crash
e Rootkit

Why study faults in OS code?

Find bugs
e Over 1900 patches based on fault-finding tools in 2005-2010.

Give users confidence

e "“Linux creator Linus Torvalds released the much anticipated
2.6.11 Linux kernel declaring, 'so it's now _officially_ all
bug-free." "

Identify research and development priorities

e ‘“drivers have an error rate up to 7 times higher than the rest
of the kernel” [Chou et al., SOSP01]

10 years ago

e In SOSP'01, Chou et al. studied faults (errors/bugs) in Linux
code.

e Faults collected using static analysis.

e Faults collected in Linux 1.0 (1994) to 2.4.1 (2001).

— Primarily “development” versions.
— x86 code.

Considered fault types

“To avoid deadlock, do not call blocking functions with interrupts disabled
Block or a spinlock held.”
Null “Check potentially NULL pointers returned from routines”
Var “Do not allocate large stack variables (>1K) on the fixed-size kernel stack.”
INull “Do not make inconsistent assumptions about whether a pointer is NULL.”
Range “Always check bounds of array indices and loop bounds derived from user
data.”
Lock “Release acquired locks; do not double-acquire locks.”
Intr “Restore disabled interrupts.”
Free “Do not use freed memory.”
Float “Do not use floating point in the kernel.”
Size “Allocate enough memory to hold the type for which you are allocating.”

Up to 70%

Million Lines of Code

Code size was increasing ...

of code dedicated to drivers

Linux Code Base Growth

2 T T

—— Total
dnvers

: 9;

0.5 ¢

1.0
o EELl e
01/94 01/95 01/96 01/97 01/98 01/99 01/00 01/01

Time

[Chou et al, SOSPO01]
6

Number of Bugs

250

200

150

100

50

faults were rising !

Total Number of Projected Bugs Through Time

e T

—+— Code Base Growth
---=---- Block-projected
—a--- Null-projected

+- Var-projected
---+-- Float-projected
---- Real-projected

- - Ko D

e
* i

Jhpnd
s

i 1

1.8
1.6
1.4
1.2

MLOC

0.8
0.6
0.4
0.2

0
01/94 01/95 01/96 01/97 01/98 01/99 01/00 01/01

[Chou et al, SOSPO01]
7

. up to 7x higher fault rate in drivers than in any other
directory.

Rate of Errors compared to Other D@
T Blocjk T T T T T k }

r Free
Inull
Intr
Lock
Null
Range
ar

2
B
i
i
2
i
2
£
- £ -
K
I
i
3
2
il L 1 L L 1 1 SN

other arch/i386 net fs drivers

| 7]

[}

Rate
O = N W R Y
BE N

g 0
|
1

[Chou et al, SOSPO01]
8

What about today?

Lots more code
e up to 8 MLOC

New release model
e 2.{45} vs 2.6.x

New SCM
e GIT since 2.6.12

Lots of new code

e 69% new code since
2.6.12

-

8 Other 2.4.0
Drivers/Staging 4.1 2.6.12
Arch 2.6.0

Drivers w/o Staging
File Systems (FS)

v2.6.33
v2.6.31
v2.6.29
v2.6.27
v2.6.25
v2.6.23
v2.6.21
v2.6.19
v2.6.17
v2.6.15
v2.6.13

surviving code percentage, by release (full kernel)

Linux 2.6.12
Released June 17, 2005

e

g

We Need New Data!

10

How to update a 10-year old study?

Static analysis tool of Chou et al. not available.
Checkers only informally described.
Inter-version correlation strategy not described.
Results no longer available.

The Linux code has changed a lot.

11

Our approach

Open source analysis tools.
e Coccinelle to find faults.

e Herodotos to correlate fault reports across versions.
Results stored in an established open archive.
Multi architecture.

Refinements to some rule types.

e Locklntr, in addition to Lock and Intr

Iteration to collect functions with specific properties.
e Blocking functions, etc.

Allows Linux code quality to be continually reassessed.

12

A few numbers

Study of Linux 2.4.1 and 34 versions of Linux 2.6 (2004-2010)
e More than 170 MLOC analyzed

e 697K files
e 6.15M functions

47 Coccinelle patterns for finding faults (30) and notes (17)
® 4.44M notes

e 40,177 fault reports
e 4,815 correlated reports (all verified)

e 3,052 correlated faults

13

Faults are no longer rising...

800
P § 600
S =3 400
* & 200
0 T | T T T T
2004 2005 2006 2007 2008 2009 2010
2.6.5 2.6.10 26.15 2.6.20 2.6.25 2.6.30
——>¢—— Elimination. ! !
- & 150 ‘ ! duction
S = 100 —y—b— Introduction|
S50 e ‘
0 T T
2004 2005 2006 2007 2008 2009 2010
n &}
= O
=2 @ 3
=7
SR
I I
2009 2010

I I
2006 2007 2008

14

Most of the faults are still in drivers

of taults

2.6.5 2.6.10 2.6.15 2.6.20 2.6.25 2.6.30

—&— Staging

3009 | | | | | | —O— Dirivers
L —+— Sound
—&— Arch
200 ES

| Net
| —+~— Other

sl

15

Fault rate

Staging for
immature code

26.25 2.6.30

------ Average
—&— Staging
—O— Drivers
—— Sound
—&— Arch
—>— FS

Net

% of faulty notes

—=— Other

il

-

|
T T T T T T T
2004 2005 2006 2007 2008 2009 2010 N

16

Fault rate

% of faulty notes

Arch has improved
but remains a problem

26.25

------ Average
—&— Staging
—O— Drivers
—— Sound
—&— Arch
—>— FS

Net
—— Other

T T T T T
2004 2005 2006 2007 2008

il

17

Fault rate

‘ Drivers are constantly improving
From worst to average

|

% of faulty notes

(
2620

262

Average
—&— Staging
—o0— Drivers
—— Sound
—&— Arch
—>— FS

Net
—— Other

T
2010

T
2009

I T T I
2005 2006 2007 2008

il

Y,

18

Fault kinds

% of faulty notes

2,620 2625 2,630

265 2610 26.15

------ Average
—=e— BlockLock
—+— Null
—m— Var
IsNull
—— NullRef
—&— Range
—o— Lock
—=— Intr
—¢— LocklIntr
—0O— Free
—a&— Size

! I T T
2004 2005 2006 2007 2008 2009 2010

19

Fault kinds

Dereference of pointers
before checking

% of faulty notes

0.0

Lfor NULL values

265 2610 26.15 2,620 2,625

------ Average
—+— Null
—— NullRef
—o0— Lock

2004 2005 2006 2007 2008 2009 2010

20

Fault kinds

Mutex was added

% of faulty notes

0.0

26.15 2,620 2,625

2,630

------ Average
—+— Null
—— NullRef
—o0— Lock

2006 2007 2008

21

Fault kinds

Btrfs was added
Unchecked pointers

% of faulty notes

0.0

a4 returned by functions

265 2610 26.15 2,620 2,625

------ Average
—+— Null
—— NullRef
—o0— Lock

2004 2005 2006 2007 2008 2009 2010

22

Assessment

Fault trends
e Fault rate in drivers decreasing.
e Fault rate high in arch, but also decreasing.

e Arch has many committers, but few patch authors.

New functionalities often cause a spike in fault rate

e These issues are resolved over time.

The management of pointers is still a problem

e NULL is often used to compensate for the lack of exceptions.

23

What next?

24

Consider new fault types

RCU: Read-copy-update locking

Increasingly used, but not as much as traditional locks.

of notes

25000 —

20000 —

15000 —

265

2004

26,10

2005

26.15

2006

2,620

2007

2.6.25

2008

2009

2,630

2010

—o— Lock, LocklIntr
—ae— LockRCU

25

Some faults found

of faults

80
60
40
20

F.GAS F.GAIO F.G.IS

—o0— Lock, LocklIntr
—&— LockRCU

2004 2005 2006 2007 2008 2009 2010

Y% of faulty notes

f

—o0— Lock, LockIntr
—e— LockRCU

2004 2005 2006 2007 2008 2009 2010

Systematize tool usage

Since 2001 all of our faults could be found by tools.
Still, between 600 and 700 faults per version.
Tools not deeply integrated into the development process.

Finding a fault can be easier than fixing it.

~

Number of patches

2612 2615 2620 2625 2630
100 —&— Coccinelle
J —— Coverity
—a&— Smatch
50 —— Sparse
3
|

|
h006 h007 h008 5009 H010

27

Conclusion
Kill bugs before they hatch

Methodology
e Based on open-source (FLOSS)
e Fault definitions in Coccinelle
Linux 2.6

e Number of faults is roughly constant
while the code size is increasing

COCCINELLE

e Drivers have improved,
now at the average fault rate

e Arch now has the worst fault rate
e NULL handling is still a problem
Existing tools are under-exploited

e Integration of Coccinelle rules since v2.6.36

e We have contributed some patches to Linux
based on our results.
28

Future work
All together is better!!

Add new checkers
e Reflect new APIs

C CCINI;:'IBIhﬁ,

Integrate tools better into in the Linux development process

e Ease the use of Coccinelle

Does ASPLOS 2012 need a session on
“Enhancing Arch Reliability”?

29

Availability — Results and tools

Fault definitions and correlation annotations

e http://faultlinux.lip6.fr/

Database of reports

e http://faultlinux.lip6.fr/phppgadmin/ (Browseable)
e http://hal.inria.fr/inria-00509256/ [RR7357 appendix]

Coccinelle

e http://coccinelle.lip6.fr/

Herodotos

e http://coccinelle.lip6.fr/herodotos.html

30

http://faultlinux.lip6.fr/
http://faultlinux.lip6.fr/phppgadmin/
http://hal.inria.fr/inria-00509256/
http://coccinelle.lip6.fr/
http://coccinelle.lip6.fr/herodotos.html

Comparable results (2)

75}

9]

= :: ;(5)8 —— Experimental values

& 150 ——0=0.562 faulty files = 338

5 = 0=0.567 faulty files = 243 (Chou et al’s values)
2 Z 100

tE

z oO+———7———71 + 71 +

(e}
o
~
=)
0
)

Number of faults per file

31

of faults

Stable fault lifespans

I
2010

Total
v2.6.0
v2.6.1
v2.6.2
v2.6.3
v2.6.4
v2.6.5
v2.6.6
v2.6.7
v2.6.8
v2.6.9
v2.6.10
v2.6.11
v2.6.12
v2.6.13
v2.6.14
v2.6.15
v2.6.16
v2.6.17
v2.6.18
v2.6.19
v2.6.20
v2.6.21
v2.6.22
v2.6.23
v2.6.24
v2.6.25
v2.6.26
v2.6.27
v2.6.28
v2.6.29
v2.6.30
v2.6.31
v2.6.32
v2.6.33

32

Average lifetime

wn
R
]
%)
>
Drivers Sound Arch FS Net Other
Var
IsNull
3 Range Lock
%) Intr NullRef BlockLock
5 2 Null
< Y Locklotr . _ . _ B _ o o---- ull
@ Float Fice
= 1
0 T T T T —
Find Easy Easy Easy Easy Hard Hard
Fix Easy Easy Hard Hard Easy Hard
Impact Low High Low High High Low

33

Cumulative number

of faults fixed

Time to fix faults

All faults
— — — 80 % of all faults
------ 50 % of all faults
—— Staging
—O— Drivers
—-—- 50 % of drivers
—4— Sound
—4&— Arch
—%— FS
Net
—/\—— Other

34

2.6.5

2.6.10

Linux workforce

26.15

2620

2009

2010

g 32'?'25 ------ All authors
= —&— Staging
5] —O0— Dirivers
3 —— Sound
g —a&— Arch
g —»— FS
2 Net
2004 2005 2006 2007 2008 2009 2010
Z
e O All committers
E —=— Staging
§ —O0— Drivers
o —— Sound
: —&— Arch
2 —=—FS
§ Net
4 hoos hoos

35

	Appendix

