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What is a fault?

A fragment of code that may cause a runtime error.

rstatic unsigned int tun_chr_poll(struct file *file, poll_table *wait) {
struct tun_file *tfile = file->private_data;
struct tun_struct *tun = __tun_get(tfile);
struct sock *sk = tun->sk;
unsigned int mask = 0;

if (!tun)
return POLLERR;

Possible effects in the Linux kernel:
e Kernel crash
e Rootkit



Why study faults in OS code?

Find bugs
e Over 1900 patches based on fault-finding tools in 2005-2010.

Give users confidence

e "“Linux creator Linus Torvalds released the much anticipated
2.6.11 Linux kernel declaring, 'so it's now _officially_ all
bug-free." "

Identify research and development priorities

e ‘“drivers have an error rate up to 7 times higher than the rest
of the kernel” [Chou et al., SOSP01]



10 years ago

e In SOSP'01, Chou et al. studied faults (errors/bugs) in Linux
code.

e Faults collected using static analysis.

e Faults collected in Linux 1.0 (1994) to 2.4.1 (2001).

— Primarily “development” versions.
— x86 code.



Considered fault types

“To avoid deadlock, do not call blocking functions with interrupts disabled
Block or a spinlock held.”
Null “Check potentially NULL pointers returned from routines”
Var “Do not allocate large stack variables (>1K) on the fixed-size kernel stack.”
INull “Do not make inconsistent assumptions about whether a pointer is NULL.”
Range “Always check bounds of array indices and loop bounds derived from user
data.”
Lock “Release acquired locks; do not double-acquire locks.”
Intr “Restore disabled interrupts.”
Free “Do not use freed memory.”
Float “Do not use floating point in the kernel.”
Size “Allocate enough memory to hold the type for which you are allocating.”




Up to 70%

Million Lines of Code

Code size was increasing ...

of code dedicated to drivers

Linux Code Base Growth
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Number of Bugs
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. up to 7x higher fault rate in drivers than in any other
directory.
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What about today?

Lots more code
e up to 8 MLOC

New release model
e 2.{45} vs 2.6.x

New SCM
e GIT since 2.6.12

Lots of new code

e 69% new code since
2.6.12

-

8 Other 2.4.0
Drivers/Staging 4.1 2.6.12
Arch 2.6.0

Drivers w/o Staging
File Systems (FS)
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We Need New Data!
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How to update a 10-year old study?

Static analysis tool of Chou et al. not available.
Checkers only informally described.
Inter-version correlation strategy not described.
Results no longer available.

The Linux code has changed a lot.
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Our approach

Open source analysis tools.
e Coccinelle to find faults.

e Herodotos to correlate fault reports across versions.
Results stored in an established open archive.
Multi architecture.

Refinements to some rule types.

e Locklntr, in addition to Lock and Intr

Iteration to collect functions with specific properties.
e Blocking functions, etc.

Allows Linux code quality to be continually reassessed.
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A few numbers

Study of Linux 2.4.1 and 34 versions of Linux 2.6 (2004-2010)
e More than 170 MLOC analyzed

e 697K files
e 6.15M functions

47 Coccinelle patterns for finding faults (30) and notes (17)
® 4.44M notes

e 40,177 fault reports
e 4,815 correlated reports (all verified)

e 3,052 correlated faults
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Faults are no longer rising...
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Most of the faults are still in drivers

# of taults
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Fault rate

Staging for
immature code
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Fault rate

% of faulty notes

Arch has improved
but remains a problem
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Fault rate

‘ Drivers are constantly improving
From worst to average
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Fault kinds

% of faulty notes
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Fault kinds

Dereference of pointers
before checking

% of faulty notes

0.0

Lfor NULL values

265 2610 26.15 2,620 2,625

------ Average
—+— Null
—— NullRef
—o0— Lock

2004 2005 2006 2007 2008 2009 2010

20




Fault kinds

Mutex was added
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Fault kinds

Btrfs was added
Unchecked pointers

% of faulty notes
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Assessment

Fault trends
e Fault rate in drivers decreasing.
e Fault rate high in arch, but also decreasing.

e Arch has many committers, but few patch authors.

New functionalities often cause a spike in fault rate

e These issues are resolved over time.

The management of pointers is still a problem

e NULL is often used to compensate for the lack of exceptions.
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What next?
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Consider new fault types

RCU: Read-copy-update locking

Increasingly used, but not as much as traditional locks.
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Some faults found

# of faults
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Systematize tool usage

Since 2001 all of our faults could be found by tools.
Still, between 600 and 700 faults per version.
Tools not deeply integrated into the development process.

Finding a fault can be easier than fixing it.
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Conclusion
Kill bugs before they hatch

Methodology
e Based on open-source (FLOSS)
e Fault definitions in Coccinelle
Linux 2.6

e Number of faults is roughly constant
while the code size is increasing

COCCINELLE

e Drivers have improved,
now at the average fault rate

e Arch now has the worst fault rate
e NULL handling is still a problem
Existing tools are under-exploited

e Integration of Coccinelle rules since v2.6.36

e We have contributed some patches to Linux
based on our results.
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Future work
All together is better!!

Add new checkers
e Reflect new APIs

C CCINI;:'IBIhﬁ,

Integrate tools better into in the Linux development process

e Ease the use of Coccinelle

Does ASPLOS 2012 need a session on
“Enhancing Arch Reliability”?
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Availability — Results and tools

Fault definitions and correlation annotations

e http://faultlinux.lip6.fr/

Database of reports

e http://faultlinux.lip6.fr/phppgadmin/ (Browseable)
e http://hal.inria.fr/inria-00509256/ [RR7357 appendix]

Coccinelle

e http://coccinelle.lip6.fr/

Herodotos

e http://coccinelle.lip6.fr/herodotos.html
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# of faults

Stable fault lifespans
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Cumulative number

of faults fixed
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2.6.5
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